Reaction participants Show >> << Hide
- Name help_outline methanethiol Identifier CHEBI:16007 (CAS: 74-93-1) help_outline Charge 0 Formula CH4S InChIKeyhelp_outline LSDPWZHWYPCBBB-UHFFFAOYSA-N SMILEShelp_outline CS 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O-acetyl-L-homoserine Identifier CHEBI:57716 Charge 0 Formula C6H11NO4 InChIKeyhelp_outline FCXZBWSIAGGPCB-YFKPBYRVSA-N SMILEShelp_outline CC(=O)OCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (Beilstein: 1901470; CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 174 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-methionine Identifier CHEBI:57844 Charge 0 Formula C5H11NO2S InChIKeyhelp_outline FFEARJCKVFRZRR-BYPYZUCNSA-N SMILEShelp_outline CSCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 121 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10048 | RHEA:10049 | RHEA:10050 | RHEA:10051 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Cloning and overexpression of the oah1 gene encoding O-acetyl-L-homoserine sulfhydrylase of Thermus thermophilus HB8 and characterization of the gene product.
Shimizu H., Yamagata S., Masui R., Inoue Y., Shibata T., Yokoyama S., Kuramitsu S., Iwama T.
The oah1 gene of an extremely thermophilic bacterium, Thermus thermophilus HB8, was cloned, sequenced, and overexpressed in Escherichia coli cells. The gene product having a high O-acetyl-L-homoserine sulfhydrylase (EC 4.2.99.10) activity was purified to homogeneity, with a recovery of approximate ... >> More
The oah1 gene of an extremely thermophilic bacterium, Thermus thermophilus HB8, was cloned, sequenced, and overexpressed in Escherichia coli cells. The gene product having a high O-acetyl-L-homoserine sulfhydrylase (EC 4.2.99.10) activity was purified to homogeneity, with a recovery of approximately 40% and a purification ratio of 81-fold, both calculated from the cell-homogenate. The protein showed molecular masses of approximately 163000 (for the native form) and 47000 (for the subunit). The isoelectric point was pH 6.0. The optimum temperature and pH for the activity were approximately 70 degrees C and pH 7.8, respectively. The enzyme was also shown to be very stable at high temperature (90% activity remaining at 90 degrees C for 60 min at pH 7.8) and in a wide range of pH (pH 4-12 at room temperature). The absorption spectrum showed a peak at 425 nm, and hydroxylamine hydrochloride (0.1 mM) inhibited approximately 90% of the activity, suggesting formation of a Schiff base with pyridoxal 5'-phosphate. The enzyme showed an apparent K(m) value of 6.8 mM for O-acetyl-L-homoserine, a V(max) value of 165 micromol/min per mg of protein at a fixed sulfide concentration of 5 mM, and also an apparent K(m) value of approximately 1.3 mM for sulfide (with 25 mM acetylhomoserine). L-Methionine (1 mM) inhibited the enzyme activity by 67%. Based on these findings, it was discussed that this enzyme might be inactive under ordinary conditions but might become active as an alternative homocysteine synthase in T. thermophilus HB8, only under such conditions as deficiency in transsulfuration, bringing about a sufficient amount of sulfide available in the cell. << Less
Biochim. Biophys. Acta 1549:61-72(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.