Enzymes
UniProtKB help_outline | 701 proteins |
Reaction participants Show >> << Hide
-
Namehelp_outline
L-lysyl-[histone]
Identifier
RHEA-COMP:9845
Reactive part
help_outline
- Name help_outline L-lysine residue Identifier CHEBI:29969 Charge 1 Formula C6H13N2O SMILEShelp_outline C([C@@H](C(*)=O)N*)CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 136 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-methyl-L-lysyl-[histone]
Identifier
RHEA-COMP:9846
Reactive part
help_outline
- Name help_outline N6-methyl-L-lysine residue Identifier CHEBI:61929 Charge 1 Formula C7H15N2O SMILEShelp_outline C([C@@H](N*)CCCC[NH2+]C)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 42 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10024 | RHEA:10025 | RHEA:10026 | RHEA:10027 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Solubilization and partial purification of protein methylase 3 from calf thymus nuclei.
Paik W.K., Kim S.
-
Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks.
Southall S.M., Wong P.S., Odho Z., Roe S.M., Wilson J.R.
The mixed-lineage leukemia protein MLL1 is a transcriptional regulator with an essential role in early development and hematopoiesis. The biological function of MLL1 is mediated by the histone H3K4 methyltransferase activity of the carboxyl-terminal SET domain. We have determined the crystal struc ... >> More
The mixed-lineage leukemia protein MLL1 is a transcriptional regulator with an essential role in early development and hematopoiesis. The biological function of MLL1 is mediated by the histone H3K4 methyltransferase activity of the carboxyl-terminal SET domain. We have determined the crystal structure of the MLL1 SET domain in complex with cofactor product AdoHcy and a histone H3 peptide. This structure indicates that, in order to form a well-ordered active site, a highly variable but essential component of the SET domain must be repositioned. To test this idea, we compared the effect of the addition of MLL complex members on methyltransferase activity and show that both RbBP5 and Ash2L but not Wdr5 stimulate activity. Additionally, we have determined the effect of posttranslational modifications on histone H3 residues downstream and upstream from the target lysine and provide a structural explanation for why H3T3 phosphorylation and H3K9 acetylation regulate activity. << Less
-
ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation.
Nakamura T., Mori T., Tada S., Krajewski W., Rozovskaia T., Wassell R., Dubois G., Mazo A., Croce C.M., Canaani E.
ALL-1 is a member of the human trithorax/Polycomb gene family and is also involved in acute leukemia. ALL-1 is present within a stable, very large multiprotein supercomplex composed of > or =29 proteins. The majority of the latter are components of the human transcription complexes TFIID (includin ... >> More
ALL-1 is a member of the human trithorax/Polycomb gene family and is also involved in acute leukemia. ALL-1 is present within a stable, very large multiprotein supercomplex composed of > or =29 proteins. The majority of the latter are components of the human transcription complexes TFIID (including TBP), SWI/SNF, NuRD, hSNF2H, and Sin3A. Other components are involved in RNA processing or in histone methylation. The complex remodels, acetylates, deacetylates, and methylates nucleosomes and/or free histones. The complex's H3-K4 methylation activity is conferred by the ALL-1 SET domain. Chromatin immunoprecipitations show that ALL-1 and other complex components examined are bound at the promoter of an active ALL-1-dependent Hox a9 gene. In parallel, H3-K4 is methylated, and histones H3 and H4 are acetylated at this promoter. << Less
Mol. Cell 10:1119-1128(2002) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation.
Qiao Q., Li Y., Chen Z., Wang M., Reinberg D., Xu R.M.
The Sotos syndrome gene product, NSD1, is a SET domain histone methyltransferase that primarily dimethylates nucleosomal histone H3 lysine 36 (H3K36). To date, the intrinsic properties of NSD1 that determine its nucleosomal substrate selectivity and dimethyl H3K36 product specificity remain unknow ... >> More
The Sotos syndrome gene product, NSD1, is a SET domain histone methyltransferase that primarily dimethylates nucleosomal histone H3 lysine 36 (H3K36). To date, the intrinsic properties of NSD1 that determine its nucleosomal substrate selectivity and dimethyl H3K36 product specificity remain unknown. The 1.7 Å structure of the catalytic domain of NSD1 presented here shows that a regulatory loop adopts a conformation that prevents free access of H3K36 to the bound S-adenosyl-L-methionine. Molecular dynamics simulation and computational docking revealed that this normally inhibitory loop can adopt an active conformation, allowing H3K36 access to the active site, and that the nucleosome may stabilize the active conformation of the regulatory loop. Hence, our study reveals an autoregulatory mechanism of NSD1 and provides insight into the molecular mechanism of the nucleosomal substrate selectivity of this disease-related H3K36 methyltransferase. << Less
J. Biol. Chem. 286:8361-8368(2011) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Partial purification and characterization of a protein lysine methyltransferase from plasmodia of Physarum polycephalum.
Venkatesan M., McManus I.R.
Plasmodia of Physarum polycephalum have an active protein lysine methyltransferase (S-adenosylmethionine:protein-lysine methyltransferase, EC 2.1.1.43). This enzyme has been purified 40-fold with a 13% yield, and it catalyzes the transfer of methyl groups from S-adenosyl-L-methionine to the epsilo ... >> More
Plasmodia of Physarum polycephalum have an active protein lysine methyltransferase (S-adenosylmethionine:protein-lysine methyltransferase, EC 2.1.1.43). This enzyme has been purified 40-fold with a 13% yield, and it catalyzes the transfer of methyl groups from S-adenosyl-L-methionine to the epsilon-amino group of lysine residues with formation of N epsilon-mono-, N epsilon-di-, and N epsilon-trimethyllysines in a molar ratio of 4:1:1 based on [14C]methyl incorporation into the methylated lysines. The ratio remains unchanged at all stages of the partial purification, as well as after fractionation by sucrose density gradient centrifugation and gel electrophoresis. The rate of protein methylation is time dependent, enzyme concentration dependent, and requires the presence of a sulfhydryl reducing agent for optimal activity. The enzyme has optimal activity at pH 8 and is inhibited by S-adenosyl-L-homocysteine and EDTA. Lysine-rich and arginine-rich histones serve as the most effective exogenous protein acceptors; P. polycephalum actomyosin is inactive, and chick skeletal myofibrillar proteins are 25% as effective as exogenous mixed histones as substrates. Lysine, polylysine, ribonuclease A, cytochrome c, and bovine serum albumin are not methylated. << Less
-
Regulation of chromatin structure by site-specific histone H3 methyltransferases.
Rea S., Eisenhaber F., O'Carroll D., Strahl B.D., Sun Z.-W., Schmid M., Opravil S., Mechtler K., Ponting C.P., Allis C.D., Jenuwein T.
The organization of chromatin into higher-order structures influences chromosome function and epigenetic gene regulation. Higher-order chromatin has been proposed to be nucleated by the covalent modification of histone tails and the subsequent establishment of chromosomal subdomains by non-histone ... >> More
The organization of chromatin into higher-order structures influences chromosome function and epigenetic gene regulation. Higher-order chromatin has been proposed to be nucleated by the covalent modification of histone tails and the subsequent establishment of chromosomal subdomains by non-histone modifier factors. Here we show that human SUV39H1 and murine Suv39h1--mammalian homologues of Drosophila Su(var)3-9 and of Schizosaccharomyces pombe clr4--encode histone H3-specific methyltransferases that selectively methylate lysine 9 of the amino terminus of histone H3 in vitro. We mapped the catalytic motif to the evolutionarily conserved SET domain, which requires adjacent cysteine-rich regions to confer histone methyltransferase activity. Methylation of lysine 9 interferes with phosphorylation of serine 10, but is also influenced by pre-existing modifications in the amino terminus of H3. In vivo, deregulated SUV39H1 or disrupted Suv39h activity modulate H3 serine 10 phosphorylation in native chromatin and induce aberrant mitotic divisions. Our data reveal a functional interdependence of site-specific H3 tail modifications and suggest a dynamic mechanism for the regulation of higher-order chromatin. << Less
-
Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase.
Fang J., Feng Q., Ketel C.S., Wang H., Cao R., Xia L., Erdjument-Bromage H., Tempst P., Simon J.A., Zhang Y.
<h4>Background</h4>Covalent modifications of histone N-terminal tails play fundamental roles in regulating chromatin structure and function. Extensive studies have established that acetylation of specific lysine residues in the histone tails plays an important role in transcriptional regulation. B ... >> More
<h4>Background</h4>Covalent modifications of histone N-terminal tails play fundamental roles in regulating chromatin structure and function. Extensive studies have established that acetylation of specific lysine residues in the histone tails plays an important role in transcriptional regulation. Besides acetylation, recent studies have revealed that histone methylation also has significant effects on heterochromatin formation and transcriptional regulation. Histone methylation occurs on specific arginine and lysine residues of histones H3 and H4. Thus far, only 2 residues on histone H4 are known to be methylated. While H4-arginine 3 (H4-R3) methylation is mediated by PRMT1, the enzyme(s) responsible for H4-lysine 20 (H4-K20) methylation is not known.<h4>Results</h4>To gain insight into the function of H4-K20 methylation, we set out to identify the enzyme responsible for this modification. We purified and cloned a novel human SET domain-containing protein, named SET8, which specifically methylates H4 at K20. SET8 is a single subunit enzyme and prefers nucleosomal substrates. We find that H4-K20 methylation occurs in a wide range of higher eukaryotic organisms and that SET8 homologs exist in C. elegans and Drosophila. We demonstrate that the Drosophila SET8 homolog has the same substrate specificity as its human counterpart. Importantly, disruption of SET8 in Drosophila reduces levels of H4-K20 methylation in vivo and results in lethality. Although H4-K20 methylation does not correlate with gene activity, it appears to be regulated during the cell cycle.<h4>Conclusions</h4>We identified and characterized an evolutionarily conserved nucleosomal H4-K20-specific methyltransferase and demonstrated its essential role in Drosophila development. << Less
Curr. Biol. 12:1086-1099(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structure of human SMYD2 protein reveals the basis of p53 tumor suppressor methylation.
Wang L., Li L., Zhang H., Luo X., Dai J., Zhou S., Gu J., Zhu J., Atadja P., Lu C., Li E., Zhao K.
SMYD2 belongs to a subfamily of histone lysine methyltransferase and was recently identified to methylate tumor suppressor p53 and Rb. Here we report that SMYD2 prefers to methylate p53 Lys-370 over histone substrates in vitro. Consistently, the level of endogenous p53 Lys-370 monomethylation is s ... >> More
SMYD2 belongs to a subfamily of histone lysine methyltransferase and was recently identified to methylate tumor suppressor p53 and Rb. Here we report that SMYD2 prefers to methylate p53 Lys-370 over histone substrates in vitro. Consistently, the level of endogenous p53 Lys-370 monomethylation is significantly elevated when SMYD2 is overexpressed in vivo. We have solved the high resolution crystal structures of the full-length SMYD2 protein in binary complex with its cofactor S-adenosylmethionine and in ternary complex with cofactor product S-adenosylhomocysteine and p53 substrate peptide (residues 368-375), respectively. p53 peptide binds to a deep pocket of the interface between catalytic SET(1-282) and C-terminal domain (CTD) with an unprecedented U-shaped conformation. Subtle conformational change exists around the p53 binding site between the binary and ternary structures, in particular the tetratricopeptide repeat motif of the CTD. In addition, a unique EDEE motif between the loop of anti-parallel β7 and β8 sheets of the SET core not only interacts with p53 substrate but also forms a hydrogen bond network with residues from CTD. These observations suggest that the tetratricopeptide repeat and EDEE motif may play an important role in determining p53 substrate binding specificity. This is further verified by the findings that deletion of the CTD domain drastically reduces the methylation activity of SMYD2 to p53 protein. Meanwhile, mutation of EDEE residues impairs both the binding and the enzymatic activity of SMYD2 to p53 Lys-370. These data together reveal the molecular basis of SMYD2 in specifically recognizing and regulating functions of p53 tumor suppressor through Lys-370 monomethylation. << Less
-
Identification of the MLL2 complex as a coactivator for estrogen receptor alpha.
Mo R., Rao S.M., Zhu Y.-J.
A novel estrogen receptor (ER)alpha coactivator complex, the MLL2 complex, which consists of MLL2, ASH2, RBQ3, and WDR5, was identified. ERalpha directly binds to the MLL2 complex through two LXXLL motifs in a region of MLL2 near the C terminus in a ligand-dependent manner. Disrupting the interact ... >> More
A novel estrogen receptor (ER)alpha coactivator complex, the MLL2 complex, which consists of MLL2, ASH2, RBQ3, and WDR5, was identified. ERalpha directly binds to the MLL2 complex through two LXXLL motifs in a region of MLL2 near the C terminus in a ligand-dependent manner. Disrupting the interaction between ERalpha and the MLL2 complex with small interfering RNAs specific against MLL2 or an MLL2 fragment representing the interacting region with ERalpha significantly inhibited the ERalpha transcription activity. The MLL2 complex was recruited on promoters of ERalpha target genes along with ERalpha upon estrogen stimulation. Inhibition of MLL2 expression decreased the estrogen-induced expression of ERalpha target genes cathepsin D and to a lesser extent pS2. In addition, MCF-7 cell growth was also inhibited by the depletion of MLL2. These results demonstrate that the ERalpha signaling pathway is critically dependent on its direct interaction with the MLL2 complex and suggest a central role for the MLL2 complex in the growth of ERalpha-positive cancer cells. << Less
-
Structural basis for the methylation site specificity of SET7/9.
Couture J.-F., Collazo E., Hauk G., Trievel R.C.
Human SET7/9 is a protein lysine methyltransferase (PKMT) that methylates histone H3, the tumor suppressor p53 and the TBP-associated factor TAF10. To elucidate the determinants of its substrate specificity, we have solved the enzyme's structure bound to a TAF10 peptide and examined its ability to ... >> More
Human SET7/9 is a protein lysine methyltransferase (PKMT) that methylates histone H3, the tumor suppressor p53 and the TBP-associated factor TAF10. To elucidate the determinants of its substrate specificity, we have solved the enzyme's structure bound to a TAF10 peptide and examined its ability to methylate histone H3, TAF10 and p53 substrates bearing either mutations or covalent modifications within their respective methylation sites. Collectively, our data reveal that SET7/9 recognizes a conserved K/R-S/T/A motif preceding the lysine substrate and has a propensity to bind aspartates and asparagines on the C-terminal side of the lysine target. We then used a sequence-based approach with this motif to identify novel substrates for this PKMT. Among the putative targets is TAF7, which is methylated at Lys5 by the enzyme in vitro. These results demonstrate the predictive value of the consensus motif in identifying novel substrates for SET7/9. << Less
Nat. Struct. Mol. Biol. 13:140-146(2006) [PubMed] [EuropePMC]
-
Drosophila Enhancer of zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites.
Czermin B., Melfi R., McCabe D., Seitz V., Imhof A., Pirrotta V.
Enhancer of Zeste is a Polycomb Group protein essential for the establishment and maintenance of repression of homeotic and other genes. In the early embryo it is found in a complex that includes ESC and is recruited to Polycomb Response Elements. We show that this complex contains a methyltransfe ... >> More
Enhancer of Zeste is a Polycomb Group protein essential for the establishment and maintenance of repression of homeotic and other genes. In the early embryo it is found in a complex that includes ESC and is recruited to Polycomb Response Elements. We show that this complex contains a methyltransferase activity that methylates lysine 9 and lysine 27 of histone H3, but the activity is lost when the E(Z) SET domain is mutated. The lysine 9 position is trimethylated and this mark is closely associated with Polycomb binding sites on polytene chromosomes but is also found in centric heterochromatin, chromosome 4, and telomeric sites. Histone H3 methylated in vitro by the E(Z)/ESC complex binds specifically to Polycomb protein. << Less
-
Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9.
Tachibana M., Ueda J., Fukuda M., Takeda N., Ohta T., Iwanari H., Sakihama T., Kodama T., Hamakubo T., Shinkai Y.
Histone H3 Lys 9 (H3-K9) methylation is a crucial epigenetic mark for transcriptional silencing. G9a is the major mammalian H3-K9 methyltransferase that targets euchromatic regions and is essential for murine embryogenesis. There is a single G9a-related methyltransferase in mammals, called GLP/Eu- ... >> More
Histone H3 Lys 9 (H3-K9) methylation is a crucial epigenetic mark for transcriptional silencing. G9a is the major mammalian H3-K9 methyltransferase that targets euchromatic regions and is essential for murine embryogenesis. There is a single G9a-related methyltransferase in mammals, called GLP/Eu-HMTase1. Here we show that GLP is also important for H3-K9 methylation of mouse euchromatin. GLP-deficiency led to embryonic lethality, a severe reduction of H3-K9 mono- and dimethylation, the induction of Mage-a gene expression, and HP1 relocalization in embryonic stem cells, all of which were phenotypes of G9a-deficiency. Furthermore, we show that G9a and GLP formed a stoichiometric heteromeric complex in a wide variety of cell types. Biochemical analyses revealed that formation of the G9a/GLP complex was dependent on their enzymatic SET domains. Taken together, our new findings revealed that G9a and GLP cooperatively exert H3-K9 methyltransferase function in vivo, likely through the formation of higher-order heteromeric complexes. << Less
-
A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells.
Ogawa H., Ishiguro K., Gaubatz S., Livingston D.M., Nakatani Y.
E2F-6 contributes to gene silencing in a manner independent of retinoblastoma protein family members. To better elucidate the molecular mechanism of repression by E2F-6, we have purified the factor from cultured cells. E2F-6 is found in a multimeric protein complex that contains Mga and Max, and t ... >> More
E2F-6 contributes to gene silencing in a manner independent of retinoblastoma protein family members. To better elucidate the molecular mechanism of repression by E2F-6, we have purified the factor from cultured cells. E2F-6 is found in a multimeric protein complex that contains Mga and Max, and thus the complex can bind not only to the E2F-binding site but also to Myc- and Brachyury-binding sites. Moreover, the complex contains chromatin modifiers such as a novel histone methyltransferase that modifies lysine 9 of histone H3, HP1gamma, and Polycomb group (PcG) proteins. The E2F-6 complex preferentially occupies target promoters in G0 cells rather than in G1 cells. These data suggest that these chromatin modifiers contribute to silencing of E2F- and Myc-responsive genes in quiescent cells. << Less
-
PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin.
Nishioka K., Rice J.C., Sarma K., Erdjument-Bromage H., Werner J., Wang Y., Chuikov S., Valenzuela P., Tempst P., Steward R., Lis J.T., Allis C.D., Reinberg D.
We have purified a human histone H4 lysine 20 methyltransferase and cloned the encoding gene, PR/SET07. A mutation in Drosophila pr-set7 is lethal: second instar larval death coincides with the loss of H4 lysine 20 methylation, indicating a fundamental role for PR-Set7 in development. Transcriptio ... >> More
We have purified a human histone H4 lysine 20 methyltransferase and cloned the encoding gene, PR/SET07. A mutation in Drosophila pr-set7 is lethal: second instar larval death coincides with the loss of H4 lysine 20 methylation, indicating a fundamental role for PR-Set7 in development. Transcriptionally competent regions lack H4 lysine 20 methylation, but the modification coincided with condensed chromosomal regions on polytene chromosomes, including chromocenter and euchromatic arms. The Drosophila male X chromosome, which is hyperacetylated at H4 lysine 16, has significantly decreased levels of lysine 20 methylation compared to that of females. In vitro, methylation of lysine 20 and acetylation of lysine 16 on the H4 tail are competitive. Taken together, these results support the hypothesis that methylation of H4 lysine 20 maintains silent chromatin, in part, by precluding neighboring acetylation on the H4 tail. << Less
Mol. Cell 9:1201-1213(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structural biology of human H3K9 methyltransferases.
Wu H., Min J., Lunin V.V., Antoshenko T., Dombrovski L., Zeng H., Allali-Hassani A., Campagna-Slater V., Vedadi M., Arrowsmith C.H., Plotnikov A.N., Schapira M.
<h4>Unlabelled</h4>SET domain methyltransferases deposit methyl marks on specific histone tail lysine residues and play a major role in epigenetic regulation of gene transcription. We solved the structures of the catalytic domains of GLP, G9a, Suv39H2 and PRDM2, four of the eight known human H3K9 ... >> More
<h4>Unlabelled</h4>SET domain methyltransferases deposit methyl marks on specific histone tail lysine residues and play a major role in epigenetic regulation of gene transcription. We solved the structures of the catalytic domains of GLP, G9a, Suv39H2 and PRDM2, four of the eight known human H3K9 methyltransferases in their apo conformation or in complex with the methyl donating cofactor, and peptide substrates. We analyzed the structural determinants for methylation state specificity, and designed a G9a mutant able to tri-methylate H3K9. We show that the I-SET domain acts as a rigid docking platform, while induced-fit of the Post-SET domain is necessary to achieve a catalytically competent conformation. We also propose a model where long-range electrostatics bring enzyme and histone substrate together, while the presence of an arginine upstream of the target lysine is critical for binding and specificity.<h4>Enhanced version</h4>This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1. << Less
PLoS ONE 5:E8570-E8570(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation.
Edmunds J.W., Mahadevan L.C., Clayton A.L.
Understanding the function of histone modifications across inducible genes in mammalian cells requires quantitative, comparative analysis of their fate during gene activation and identification of enzymes responsible. We produced high-resolution comparative maps of the distribution and dynamics of ... >> More
Understanding the function of histone modifications across inducible genes in mammalian cells requires quantitative, comparative analysis of their fate during gene activation and identification of enzymes responsible. We produced high-resolution comparative maps of the distribution and dynamics of H3K4me3, H3K36me3, H3K79me2 and H3K9ac across c-fos and c-jun upon gene induction in murine fibroblasts. In unstimulated cells, continuous turnover of H3K9 acetylation occurs on all K4-trimethylated histone H3 tails; distribution of both modifications coincides across promoter and 5' part of the coding region. In contrast, K36- and K79-methylated H3 tails, which are not dynamically acetylated, are restricted to the coding regions of these genes. Upon stimulation, transcription-dependent increases in H3K4 and H3K36 trimethylation are seen across coding regions, peaking at 5' and 3' ends, respectively. Addressing molecular mechanisms involved, we find that Huntingtin-interacting protein HYPB/Setd2 is responsible for virtually all global and transcription-dependent H3K36 trimethylation, but not H3K36-mono- or dimethylation, in these cells. These studies reveal four distinct layers of histone modification across inducible mammalian genes and show that HYPB/Setd2 is responsible for H3K36 trimethylation throughout the mouse nucleus. << Less
-
PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex.
Cho Y.-W., Hong T., Hong S., Guo H., Yu H., Kim D., Guszczynski T., Dressler G.R., Copeland T.D., Kalkum M., Ge K.
PTIP, a protein with tandem BRCT domains, has been implicated in DNA damage response. However, its normal cellular functions remain unclear. Here we show that while ectopically expressed PTIP is capable of interacting with DNA damage response proteins including 53BP1, endogenous PTIP, and a novel ... >> More
PTIP, a protein with tandem BRCT domains, has been implicated in DNA damage response. However, its normal cellular functions remain unclear. Here we show that while ectopically expressed PTIP is capable of interacting with DNA damage response proteins including 53BP1, endogenous PTIP, and a novel protein PA1 are both components of a Set1-like histone methyltransferase (HMT) complex that also contains ASH2L, RBBP5, WDR5, hDPY-30, NCOA6, SET domain-containing HMTs MLL3 and MLL4, and substoichiometric amount of JmjC domain-containing putative histone demethylase UTX. PTIP complex carries robust HMT activity and specifically methylates lysine 4 (K4) on histone H3. Furthermore, PA1 binds PTIP directly and requires PTIP for interaction with the rest of the complex. Moreover, we show that hDPY-30 binds ASH2L directly. The evolutionarily conserved hDPY-30, ASH2L, RBBP5, and WDR5 likely constitute a subcomplex that is shared by all human Set1-like HMT complexes. In contrast, PTIP, PA1, and UTX specifically associate with the PTIP complex. Thus, in cells without DNA damage agent treatment, the endogenous PTIP associates with a Set1-like HMT complex of unique subunit composition. As histone H3 K4 methylation associates with active genes, our study suggests a potential role of PTIP in the regulation of gene expression. << Less
-
ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3.
Byrd K.N., Shearn A.
Covalent modifications of histone tails modulate gene expression via chromatin organization. As examples, methylation of lysine 9 residues of histone H3 (H3) (H3-K9) is believed to repress transcription by compacting chromatin, whereas methylation of lysine 4 residues of H3 (H3-K4) is believed to ... >> More
Covalent modifications of histone tails modulate gene expression via chromatin organization. As examples, methylation of lysine 9 residues of histone H3 (H3) (H3-K9) is believed to repress transcription by compacting chromatin, whereas methylation of lysine 4 residues of H3 (H3-K4) is believed to activate transcription by relaxing chromatin. The Drosophila trithorax group protein absent, small, or homeotic discs 1 (ASH1) is involved in maintaining active transcription of many genes. Here we report that in extreme ash1 mutants, no H3-K4 methylation is detectable. Within the limits of our assays, this lack of detectable H3-K4 methylation implies that ASH1 is required for essentially all H3-K4 methylation that occurs in vivo. We report further that the 149-aa SET domain of ASH1 is sufficient for H3-K4 methylation in vitro. These findings support a model in which ASH1 is directly involved in maintaining active transcription by conferring a relaxed chromatin structure. << Less
Proc. Natl. Acad. Sci. U.S.A. 100:11535-11540(2003) [PubMed] [EuropePMC]
-
The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair.
Lee S.-H., Oshige M., Durant S.T., Rasila K.K., Williamson E.A., Ramsey H., Kwan L., Nickoloff J.A., Hromas R.
The molecular mechanism by which foreign DNA integrates into the human genome is poorly understood yet critical to many disease processes, including retroviral infection and carcinogenesis, and to gene therapy. We hypothesized that the mechanism of genomic integration may be similar to transpositi ... >> More
The molecular mechanism by which foreign DNA integrates into the human genome is poorly understood yet critical to many disease processes, including retroviral infection and carcinogenesis, and to gene therapy. We hypothesized that the mechanism of genomic integration may be similar to transposition in lower organisms. We identified a protein, termed Metnase, that has a SET domain and a transposase/nuclease domain. Metnase methylates histone H3 lysines 4 and 36, which are associated with open chromatin. Metnase increases resistance to ionizing radiation and increases nonhomologous end-joining repair of DNA doublestrand breaks. Most significantly, Metnase promotes integration of exogenous DNA into the genomes of host cells. Therefore, Metnase is a nonhomologous end-joining repair protein that regulates genomic integration of exogenous DNA and establishes a relationship among histone modification, DNA repair, and integration. The data suggest a model wherein Metnase promotes integration of exogenous DNA by opening chromatin and facilitating joining of DNA ends. This study demonstrates that eukaryotic transposase domains can have important cell functions beyond transposition of genetic elements. << Less
Proc. Natl. Acad. Sci. U.S.A. 102:18075-18080(2005) [PubMed] [EuropePMC]
-
Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3.
Tachibana M., Sugimoto K., Fukushima T., Shinkai Y.
The covalent modification of histone tails has regulatory roles in various nuclear processes, such as control of transcription and mitotic chromosome condensation. Among the different groups of enzymes known to catalyze the covalent modification, the most recent additions are the histone methyltra ... >> More
The covalent modification of histone tails has regulatory roles in various nuclear processes, such as control of transcription and mitotic chromosome condensation. Among the different groups of enzymes known to catalyze the covalent modification, the most recent additions are the histone methyltransferases (HMTases), whose functions are now being characterized. Here we show that a SET domain-containing protein, G9a, is a novel mammalian lysine-preferring HMTase. Like Suv39 h1, the first identified lysine-preferring mammalian HMTase, G9a transfers methyl groups to the lysine residues of histone H3, but with a 10-20-fold higher activity. It was reported that lysines 4, 9, and 27 in H3 are methylated in mammalian cells. G9a was able to add methyl groups to lysine 27 as well as 9 in H3, compared with Suv39 h1, which was only able to methylate lysine 9. Our data clearly demonstrated that G9a has an enzymatic nature distinct from Suv39 h1 and its homologue h2. Finally, fluorescent protein-labeled G9a was shown to be localized in the nucleus but not in the repressive chromatin domains of centromeric loci, in which Suv39 h1 family proteins were localized. This finding indicates that G9a may contribute to the organization of the higher order chromatin structure of non-centromeric loci. << Less