Enzymes
UniProtKB help_outline | 8 proteins |
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline a hydroperoxide Identifier CHEBI:35924 Charge 0 Formula HO2R SMILEShelp_outline OO[*] 2D coordinates Mol file for the small molecule Search links Involved in 28 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
[protein]-dithiol
Identifier
RHEA-COMP:10594
Reactive part
help_outline
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS Positionhelp_outline C1 SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS Positionhelp_outline C2 SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
[protein]-disulfide
Identifier
RHEA-COMP:10593
Reactive part
help_outline
- Name help_outline L-cystine residue Identifier CHEBI:50058 Charge 0 Formula C6H8N2O2S2 SMILEShelp_outline C([C@@H](N*)CSSC[C@@H](C(=O)*)N*)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 51 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an alcohol Identifier CHEBI:30879 Charge 0 Formula HOR SMILEShelp_outline O[*] 2D coordinates Mol file for the small molecule Search links Involved in 1,548 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10008 | RHEA:10009 | RHEA:10010 | RHEA:10011 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Peroxiredoxins.
Hofmann B., Hecht H.J., Flohe L.
Present knowledge on peroxiredoxins is reviewed with special emphasis on catalytic principles, specificities and biological function. Peroxiredoxins are low efficiency peroxidases using thiols as reductants. They appear to be fairly promiscuous with respect to the hydroperoxide substrate; the spec ... >> More
Present knowledge on peroxiredoxins is reviewed with special emphasis on catalytic principles, specificities and biological function. Peroxiredoxins are low efficiency peroxidases using thiols as reductants. They appear to be fairly promiscuous with respect to the hydroperoxide substrate; the specificities for the donor substrate vary considerably between the subfamilies, comprising GSH, thioredoxin, tryparedoxin and the analogous CXXC motifs in bacterial AhpF proteins. Peroxiredoxins are definitely responsible for antioxidant defense in bacteria (AhpC), yeast (thioredoxin peroxidase) and trypanosomatids (tryparedoxin peroxidase). They are considered to determine virulence of mycobacteria and trypanosomatids. In higher plants they are involved in balancing hydroperoxide production during photosynthesis. In higher animals peroxiredoxins appear to be involved in the redox-regulation of cellular signaling and differentiation, displaying in part opposite effects. << Less
-
Crystal structure of a novel human peroxidase enzyme at 2.0-A resolution.
Choi H.-J., Kang S.W., Yang C.-H., Rhee S.G., Ryu S.-E.
Hydrogen peroxide (H2O2) has been implicated recently as an intracellular messenger that affects cellular processes including protein phosphorylation, transcription and apoptosis. A set of novel peroxidases, named peroxiredoxins (Prx), regulate the intracellular concentration of H2O2 by reducing i ... >> More
Hydrogen peroxide (H2O2) has been implicated recently as an intracellular messenger that affects cellular processes including protein phosphorylation, transcription and apoptosis. A set of novel peroxidases, named peroxiredoxins (Prx), regulate the intracellular concentration of H2O2 by reducing it in the presence of an appropriate electron donor. The crystal structure of a human Prx enzyme, hORF6, reveals that the protein contains two discrete domains and forms a dimer. The N-terminal domain has a thioredoxin fold and the C-terminal domain is used for dimerization. The active site cysteine (Cys 47), which exists as cysteine-sulfenic acid in the crystal, is located at the bottom of a relatively narrow pocket. The positively charged environment surrounding Cys 47 accounts for the peroxidase activity of the enzyme, which contains no redox cofactors. << Less
-
Structure, mechanism and regulation of peroxiredoxins.
Wood Z.A., Schroder E., Robin Harris J., Poole L.B.
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels which mediate signal transduction in mammalian cells. Prxs can be regulated by changes to phosphorylation, redox and possibly oligomerization states. Prxs are divided into three ... >> More
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels which mediate signal transduction in mammalian cells. Prxs can be regulated by changes to phosphorylation, redox and possibly oligomerization states. Prxs are divided into three classes: typical 2-Cys Prxs; atypical 2-Cys Prxs; and 1-Cys Prxs. All Prxs share the same basic catalytic mechanism, in which an active-site cysteine (the peroxidatic cysteine) is oxidized to a sulfenic acid by the peroxide substrate. The recycling of the sulfenic acid back to a thiol is what distinguishes the three enzyme classes. Using crystal structures, a detailed catalytic cycle has been derived for typical 2-Cys Prxs, including a model for the redox-regulated oligomeric state proposed to control enzyme activity. << Less
Trends Biochem Sci 28:32-40(2003) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate.
Seo M.S., Kang S.W., Kim K., Baines I.C., Lee T.H., Rhee S.G.
Peroxidases of the peroxiredoxin (Prx) family contain a Cys residue that is preceded by a conserved sequence in the NH(2)-terminal region. A new type of mammalian Prx, designated PrxV, has now been identified as the result of a data base search with this conserved Cys-containing sequence. The 162- ... >> More
Peroxidases of the peroxiredoxin (Prx) family contain a Cys residue that is preceded by a conserved sequence in the NH(2)-terminal region. A new type of mammalian Prx, designated PrxV, has now been identified as the result of a data base search with this conserved Cys-containing sequence. The 162-amino acid PrxV shares only approximately 10% sequence identity with previously identified mammalian Prx enzymes and contains Cys residues at positions 73 and 152 in addition to that (Cys(48)) corresponding to the conserved Cys. Analysis of mutant human PrxV proteins in which each of these three Cys residues was individually replaced with serine suggested that the sulfhydryl group of Cys(48) is the site of oxidation by peroxides and that oxidized Cys(48) reacts with the sulfhydryl group of Cys(152) to form an intramolecular disulfide linkage. The oxidized intermediate of PrxV is thus distinct from those of other Prx enzymes, which form either an intermolecular disulfide or a sulfenic acid intermediate. The disulfide formed by PrxV is reduced by thioredoxin but not by glutaredoxin or glutathione. Thus, PrxV mutants lacking Cys(48) or Cys(152) showed no detectable thioredoxin-dependent peroxidase activity, whereas mutation of Cys(73) had no effect on activity. Immunoblot analysis revealed that PrxV is widely expressed in rat tissues and cultured mammalian cells and is localized intracellularly to cytosol, mitochondria, and peroxisomes. The peroxidase function of PrxV in vivo was demonstrated by the observations that transient expression of the wild-type protein, but not that of the Cys(48) mutant, in NIH 3T3 cells inhibited H(2)O(2) accumulation and activation of c-Jun NH(2)-terminal kinase induced by tumor necrosis factor-alpha. << Less