Enzymes
UniProtKB help_outline | 6,816 proteins |
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline Ca2+ Identifier CHEBI:29108 (CAS: 14127-61-8) help_outline Charge 2 Formula Ca InChIKeyhelp_outline BHPQYMZQTOCNFJ-UHFFFAOYSA-N SMILEShelp_outline [Ca++] 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline K+ Identifier CHEBI:29103 (CAS: 24203-36-9) help_outline Charge 1 Formula K InChIKeyhelp_outline NPYPAHLBTDXSSS-UHFFFAOYSA-N SMILEShelp_outline [K+] 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:69967 | RHEA:69968 | RHEA:69969 | RHEA:69970 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
Reactome help_outline |
Publications
-
Electrophysiological characterization and ionic stoichiometry of the rat brain K(+)-dependent NA(+)/CA(2+) exchanger, NCKX2.
Dong H., Light P.E., French R.J., Lytton J.
We have recently described a novel K(+)-dependent Na(+)/Ca(2+) exchanger, NCKX2, that is abundantly expressed in brain neurons (Tsoi, M., Rhee, K.-H., Bungard, D., Li, X.-F., Lee, S.-L., Auer, R. N., and Lytton, J. (1998) J. Biol. Chem. 273, 4115--4162). The precise role for NCKX2 in neuronal Ca(2 ... >> More
We have recently described a novel K(+)-dependent Na(+)/Ca(2+) exchanger, NCKX2, that is abundantly expressed in brain neurons (Tsoi, M., Rhee, K.-H., Bungard, D., Li, X.-F., Lee, S.-L., Auer, R. N., and Lytton, J. (1998) J. Biol. Chem. 273, 4115--4162). The precise role for NCKX2 in neuronal Ca(2+) homeostasis is not yet clearly understood but will depend upon the functional properties of the molecule. Here, we have performed whole-cell patch clamp analysis to characterize cation dependences and ion stoichiometry for rat brain NCKX2, heterologously expressed in HEK293 cells. Outward currents generated by reverse NCKX2 exchange depended on external Ca(2+) with a K(12) of 1.4 or 101 microm without or with 1 mm Mg(2+), and on external K(+) with a K(1/2) of about 12 or 36 mm with choline or Li(+) as counter ion, respectively. Na(+) inhibited outward currents with a K(1/2) of about 60 mm. Inward currents generated by forward NCKX2 exchange depended upon external Na(+) with a K(1/2) of 30 mm and a Hill coefficient of 2.8. K(+) inhibited the inward currents by a maximum of 40%, with a K(1/2) of 2 mm or less, depending upon the conditions. The transport stoichiometry of NCKX2 was determined by observing the change in reversal potential as individual ion gradients were altered. Our data support a stoichiometry for rat brain NCKX2 of 4 Na(+):(1 Ca(2+) + 1 K(+)). These findings provide the first electrophysiological characterization of rat brain NCKX2, and the first evidence that a single recombinantly expressed NCKX polypeptide encodes a K(+)-transporting Na(+)/Ca(2+) exchanger with a transport stoichiometry of 4 Na(+):(1 Ca(2+) + 1 K(+)). << Less
-
Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients.
Cervetto L., Lagnado L., Perry R.J., Robinson D.W., McNaughton P.A.
Calcium is transported across the surface membrane of both nerve and muscle by a Na+-dependent mechanism, usually termed the Na:Ca exchange. It is well established from experiments on rod outer segments that one net positive charge enters the cell for every Ca2+ ion extruded by the exchange, which ... >> More
Calcium is transported across the surface membrane of both nerve and muscle by a Na+-dependent mechanism, usually termed the Na:Ca exchange. It is well established from experiments on rod outer segments that one net positive charge enters the cell for every Ca2+ ion extruded by the exchange, which is generally interpreted to imply an exchange stoichiometry of 3 Na+:1 Ca2+. We have measured the currents associated with the operation of the exchange in both forward and reversed modes in isolated rod outer segments and we find that the reversed mode, in which Ca2+ enters the cell in exchange for Na+, depends strongly on the presence of external K+. The ability of changes in external K+ concentration ([K+]o) to perturb the equilibrium level of [Ca2+]i indicates that K+ is co-transported with calcium. From an examination of the relative changes of [Ca2+]o, [Na+]o, [K+]o and membrane potential required to maintain the exchange at equilibrium, we conclude that the exchange stoichiometry is 4 Na+:1 Ca2+, 1 K+ and we propose that the exchange should be renamed the Na:Ca, K exchange. Harnessing the outward K+ gradient should allow the exchange to maintain a Ca2+ efflux down to levels of internal [Ca2+] that are considerably lower than would be possible with a 3 Na+:1 Ca2+ exchange. << Less
-
Stoichiometry of the retinal cone Na/Ca-K exchanger heterologously expressed in insect cells: comparison with the bovine heart Na/Ca exchanger.
Szerencsei R.T., Prinsen C.F., Schnetkamp P.P.
The transport stoichiometry is an essential property of antiporter and symporter transport proteins. In this study, we determined the transport stoichiometry of the retinal cone potassium-dependent Na/Ca exchanger (NCKX) expressed in sodium-loaded cultured insect cells. The Na/Ca and Rb/Ca couplin ... >> More
The transport stoichiometry is an essential property of antiporter and symporter transport proteins. In this study, we determined the transport stoichiometry of the retinal cone potassium-dependent Na/Ca exchanger (NCKX) expressed in sodium-loaded cultured insect cells. The Na/Ca and Rb/Ca coupling ratios were obtained by direct measurements of the levels of (86)Rb and (45)Ca uptake and sodium release associated with reverse Na/Ca exchange. Rb/Ca coupling ratios of 0.98 [standard deviation (SD) of 0.12, 15 observations] and 0.92 (SD of 0.12, 13 observations) were obtained for the chicken and human retinal cone NCKX, respectively. Na/Ca coupling ratios of 4.11 (SD of 0.24, 10 observations) and 3.98 (SD of 0.34, 15 observations) were obtained for the chicken and human retinal cone NCKX, respectively, whereas a lower average coupling ratio of 3.11 (SD of 0.34, 10 observations) was obtained with cells expressing the bovine Na/Ca exchanger (NCX1). These results are consistent with a 4Na/1Ca + 1K stoichiometry for retinal cone NCKX. High Five cells expressing full-length dolphin rod NCKX, Caenorhabditis elegans NCKX, or bovine rod NCKX from which the two large hydrophilic loops were removed all showed a significant calcium-dependent (86)Rb uptake, whereas no calcium-dependent (86)Rb uptake was observed in cells expressing bovine NCX1. The calcium dependence of (45)Ca uptake yielded values between 1 and 2.5 microM for the external calcium dissociation constant of the different NCKX proteins studied here. << Less
-
Na+-Ca2+ exchange in bovine rod outer segments requires and transports K+.
Schnetkamp P.P., Basu D.K., Szerencsei R.T.
Intact outer segments isolated from bovine retinas (bovine ROS) display a high activity of Na+-Ca2+ exchange, and Na+-Ca2+ exchange appears to be the only functional ion transporter present. Here we demonstrate for the first time that Na+-Ca2+ exchange requires and transports K+ from the following ... >> More
Intact outer segments isolated from bovine retinas (bovine ROS) display a high activity of Na+-Ca2+ exchange, and Na+-Ca2+ exchange appears to be the only functional ion transporter present. Here we demonstrate for the first time that Na+-Ca2+ exchange requires and transports K+ from the following observations. 1) Na+-Ca2+ exchange in bovine ROS required the simultaneous presence of K+ and Ca2+ on one side of the membrane and the presence of Na+ on the other side. 2) Na+-stimulated Ca2+ release from bovine ROS was accompanied by an equally large release of K+. We used the electrogenic protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) as an added electrical shunt; in the intact rod cell, electrogenic Na+-Ca2+ exchange is shunted by K+ channels present in the rod inner segment. In the presence of FCCP, an inward Na+-Ca2+ exchange current was accompanied by an outward current of protons with a stoichiometry of 1 H+/Ca2+; in the absence of FCCP, no Na+-induced proton current was observed. Addition of FCCP did not uncouple Na+-induced K+ release from Na+-induced Ca2+ release. We conclude that Na+-Ca2+ exchange in bovine rod photoreceptors operates at an electrogenic stoichiometry of 4 Na+:(1 Ca2+ + 1 K+). In isolated ROS and in the absence of an external electrical shunt, Na+-Ca2+ exchange operated at an electroneutral stoichiometry of 3 Na+:(1 Ca2+ + 1 K+). << Less