Reaction participants Show >> << Hide
- Name help_outline trimethylamine Identifier CHEBI:58389 Charge 1 Formula C3H10N InChIKeyhelp_outline GETQZCLCWQTVFV-UHFFFAOYSA-O SMILEShelp_outline C[NH+](C)C 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,320 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,830 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline trimethylamine N-oxide Identifier CHEBI:15724 (CAS: 1184-78-7) help_outline Charge 0 Formula C3H9NO InChIKeyhelp_outline UYPYRKYUKCHHIB-UHFFFAOYSA-N SMILEShelp_outline C[N+](C)([O-])C 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,326 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,418 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:31979 | RHEA:31980 | RHEA:31981 | RHEA:31982 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA.
Dolphin C.T., Riley J.H., Smith R.L., Shephard E.A., Phillips I.R.
The inherited metabolic disorder trimethylaminuria (fish-odor syndrome) is associated with defective hepatic N-oxidation of dietary-derived trimethylamine catalyzed by flavin-containing monooxygenase (FMO). As FMO3 encodes the major form of FMO expressed in adult human liver, it represents the bes ... >> More
The inherited metabolic disorder trimethylaminuria (fish-odor syndrome) is associated with defective hepatic N-oxidation of dietary-derived trimethylamine catalyzed by flavin-containing monooxygenase (FMO). As FMO3 encodes the major form of FMO expressed in adult human liver, it represents the best candidate gene for the disorder. The structural organization of FMO3 was determined by sequencing the products of exon-to-exon and vectorette PCR, the latter through the use of vectorette libraries constructed directly from genomic DNA. The gene contains one noncoding and eight coding exons. Knowledge of the exon/intron organization of the human FMO3 gene enabled each of the coding exons of the gene, together with their associated flanking intron sequences, to be amplified from genomic DNA and will thus facilitate the identification of mutations in FMO3 in families affected with fish-odor syndrome. << Less
-
Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase.
Chen Y., Patel N.A., Crombie A., Scrivens J.H., Murrell J.C.
Flavin-containing monooxygenases (FMOs) are one of the most important monooxygenase systems in Eukaryotes and have many important physiological functions. FMOs have also been found in bacteria; however, their physiological function is not known. Here, we report the identification and characterizat ... >> More
Flavin-containing monooxygenases (FMOs) are one of the most important monooxygenase systems in Eukaryotes and have many important physiological functions. FMOs have also been found in bacteria; however, their physiological function is not known. Here, we report the identification and characterization of trimethylamine (TMA) monooxygenase, termed Tmm, from Methylocella silvestris, using a combination of proteomic, biochemical, and genetic approaches. This bacterial FMO contains the FMO sequence motif (FXGXXXHXXXF/Y) and typical flavin adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-binding domains. The enzyme was highly expressed in TMA-grown M. silvestris and absent during growth on methanol. The gene, tmm, was expressed in Escherichia coli, and the purified recombinant protein had high Tmm activity. Mutagenesis of this gene abolished the ability of M. silvestris to grow on TMA as a sole carbon and energy source. Close homologs of tmm occur in many Alphaproteobacteria, in particular Rhodobacteraceae (marine Roseobacter clade, MRC) and the marine SAR11 clade (Pelagibacter ubique). We show that the ability of MRC to use TMA as a sole carbon and/or nitrogen source is directly linked to the presence of tmm in the genomes, and purified Tmm of MRC and SAR11 from recombinant E. coli showed Tmm activities. The tmm gene is highly abundant in the metagenomes of the Global Ocean Sampling expedition, and we estimate that 20% of the bacteria in the surface ocean contain tmm. Taken together, our results suggest that Tmm, a bacterial FMO, plays an important yet overlooked role in the global carbon and nitrogen cycles. << Less
Proc. Natl. Acad. Sci. U.S.A. 108:17791-17796(2011) [PubMed] [EuropePMC]
-
Mutations of the flavin-containing monooxygenase gene (FMO3) cause trimethylaminuria, a defect in detoxication.
Treacy E.P., Akerman B.R., Chow L.M.L., Youil R., Bibeau C., Lin J., Bruce A.G., Knight M., Danks D.M., Cashman J.R., Forrest S.M.
Individuals with the recessive condition trimethylaminuria exhibit variation in metabolic detoxication of xenobiotics by hepatic flavin-containing monooxygenases. We show here that mutations in the human flavin-containing monooxygenase isoform 3 gene ( FMO3 ) impair N -oxygenation of xenobiotics a ... >> More
Individuals with the recessive condition trimethylaminuria exhibit variation in metabolic detoxication of xenobiotics by hepatic flavin-containing monooxygenases. We show here that mutations in the human flavin-containing monooxygenase isoform 3 gene ( FMO3 ) impair N -oxygenation of xenobiotics and are responsible for the trimethylaminuria phenotype. Three disease-causing mutations in nine Australian-born probands have been identified which share a particular polymorphic haplotype. Nonsense and missense mutations are associated with a severe phenotype and are also implicated in impaired metabolism of other nitrogen- and sulfur-containing substrates including biogenic amines, both clinically and when mutated proteins expressed from cDNA are studied in vitro . These findings illustrate the critical role played by human FMO3 in the metabolism of xenobiotic substrates and endogenous amines. << Less