Enzymes
UniProtKB help_outline | 5,297 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline N,N-dimethylaniline Identifier CHEBI:16269 (CAS: 121-69-7) help_outline Charge 0 Formula C8H11N InChIKeyhelp_outline JLTDJTHDQAWBAV-UHFFFAOYSA-N SMILEShelp_outline CN(C)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,320 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,830 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,836 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N,N-dimethylaniline N-oxide Identifier CHEBI:17735 (CAS: 874-52-2) help_outline Charge 0 Formula C8H11NO InChIKeyhelp_outline LKQUDAOAMBKKQW-UHFFFAOYSA-N SMILEShelp_outline CN(C)(=O)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,326 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,418 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:24468 | RHEA:24469 | RHEA:24470 | RHEA:24471 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Characterization of hepatic microsomal metabolism as an in vivo detoxication pathway of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice.
Chiba K., Kubota E., Miyakawa T., Kato Y., Ishizaki T.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a selective neurotoxin to the nigrostriatal dopaminergic neurons, has been shown to be metabolized by microsomal flavin-containing monooxygenase (FMO) to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine N-oxide and by cytochrome (cyt.) P-450 to 4-ph ... >> More
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a selective neurotoxin to the nigrostriatal dopaminergic neurons, has been shown to be metabolized by microsomal flavin-containing monooxygenase (FMO) to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine N-oxide and by cytochrome (cyt.) P-450 to 4-phenyl-1,2,3,6-tetrahydropyridine in the liver. The present study was conducted to determine whether and to what extent each of these metabolic processes would function as the detoxication pathway(s) of MPTP. Administration of either MPTP metabolites, MPTP N-oxide or 4-phenyl-1,2,3,6-tetrahydropyridine, to mice resulted in no significant reductions in striatal dopamine and its metabolites. Pretreatment of mice with alternate substrate of FMO, N-methylmercaptoimidazole or thiobenzamide significantly (P less than .001 to .05) enhanced MPTP-induced reductions in striatal dopamine and its metabolites. In contrast, neither pretreatments with cyt. P-450 inhibitors, SKF-525A (2-diethylaminoethyl-2,2-diphenyl-valerate), quinidine and cimetidine nor with the inducers, phenobarbital and 3-methyl-cholanthrene altered the neurotoxic effects of MPTP. The rate of clearance (Vmax/Km) of N-oxygenation by hepatic microsomes from intact mice was 32 times greater than that of N-demethylation. Although phenobarbital treatment increased Vmax/Km of N-demethylation by 100%, it was still 10 times lower than that of N-oxygenation. Thus, the different responsivenesses of MPTP-treated mice to alternate substrates of FMO and cyt. P-450 modulators appear to come from the difference in the rate of metabolism between N-oxygenation and N-demethylation of MPTP.(ABSTRACT TRUNCATED AT 250 WORDS) << Less
J Pharmacol Exp Ther 246:1108-1115(1988) [PubMed] [EuropePMC]
-
Human flavin-containing monooxygenases.
Cashman J.R., Zhang J.
This review summarizes recent information concerning the pharmacological and toxicological significance of the human flavin-containing monooxygenase (FMO, EC 1.14.13.8). The human FMO oxygenates nucleophilic heteroatom-containing chemicals and drugs and generally converts them into harmless, polar ... >> More
This review summarizes recent information concerning the pharmacological and toxicological significance of the human flavin-containing monooxygenase (FMO, EC 1.14.13.8). The human FMO oxygenates nucleophilic heteroatom-containing chemicals and drugs and generally converts them into harmless, polar, readily excreted metabolites. Sometimes, however, FMO bioactivates chemicals into reactive materials that can cause toxicity. Most of the interindividual differences of FMO are due to genetic variability and allelic variation, and splicing variants may contribute to interindividual and interethnic variability observed for FMO-mediated metabolism. In contrast to cytochrome P450 (CYP), FMO is not easily induced nor readily inhibited, and potential adverse drug-drug interactions are minimized for drugs prominently metabolized by FMO. These properties may provide advantages in drug design and discovery, and by incorporating FMO detoxication pathways into drug candidates, more drug-like materials may be forthcoming. Although exhaustive examples are not available, physiological factors can influence FMO function, and this may have implications for the clinical significance of FMO and a role in human disease. << Less
Annu Rev Pharmacol Toxicol 46:65-100(2006) [PubMed] [EuropePMC]
-
Reactions of the 4a-hydroperoxide of liver microsomal flavin-containing monooxygenase with nucleophilic and electrophilic substrates.
Jones K.C., Ballou D.P.
Liver microsomal flavin-containing monooxygenase (MFMO) has been shown to exhibit a stable 4a-flavin hydroperoxide intermediate in the absence of oxygenatable substrate (Poulsen, L. L., and Ziegler, D. M. (1979) J. Biol. Chem. 254, 6449-6455; Beaty, N. B., and Ballou, D. P. (1981) J. Biol. Chem. 2 ... >> More
Liver microsomal flavin-containing monooxygenase (MFMO) has been shown to exhibit a stable 4a-flavin hydroperoxide intermediate in the absence of oxygenatable substrate (Poulsen, L. L., and Ziegler, D. M. (1979) J. Biol. Chem. 254, 6449-6455; Beaty, N. B., and Ballou, D. P. (1981) J. Biol. Chem. 256, 4619-4625). The reaction of this intermediate with an assortment of substrates was studied by stopped flow techniques. The first observed spectral change is a small blue shift in the absorbance peak of the 4a-flavin intermediate. The rate of this spectral change is dependent on the concentration of the substrate. This small spectral change is succeeded by a large increase in the absorbance at 450 nm. The rate of appearance of oxidized flavin is independent of substrate concentration but does increase at higher pH. Steady state turnover rates also greater at higher pH, consistent with earlier observations that the formation of oxidized flavin is rate determining in catalysis. Upon oxygenation by MFMO, thiobenzamide and iodide each undergo a spectral change which is dependent on substrate concentration. The spectral changes corresponding to oxygenation of these substrates occur at the same rates as do the initial small spectral changes contributed by the flavin chromophore as observed with all substrates. However, no substrate tested to date shows any effect on the rate of formation of oxidized flavin. Previous work has shown MFMO to catalyze the oxygenation of a variety of nitrogen- and sulfur-containing hydrophobic compounds. Two new classes of compounds are shown here to be substrates for this enzyme. The nucleophilic anions, iodide and thiocyanate, catalyze the decomposition of the 4a-flavin hydroperoxide. Organic boronic acids (e.g. phenylboronic acid and butylboronic acid) also appear to be oxygenated with no striking differences in kinetic characteristics from those of nucleophilic substrates. These organic boronic acids are classic electrophiles and suggest that like peracids, the 4a-flavin hydroperoxide is capable of oxygenating both nucleophiles and electrophiles (Lee, J. B., and Uff, B. C. (1967) Quart. Rev. 21, 429-457). << Less
-
N-oxygenation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by the rat liver flavin-containing monooxygenase expressed in yeast cells.
Chiba K., Kobayashi K., Itoh K., Itoh S., Chiba T., Ishizaki T., Kamataki T.
N-oxygenation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic neurotoxin, was studied using recombinant rat liver flavin-containing monooxygenase (FMO), FMO1A1, expressed in yeast cells. The mean (+/-S.D.) kinetic parameters of MPTP N-oxygenation were: Km = 1.8 +/-0.5 microM ... >> More
N-oxygenation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic neurotoxin, was studied using recombinant rat liver flavin-containing monooxygenase (FMO), FMO1A1, expressed in yeast cells. The mean (+/-S.D.) kinetic parameters of MPTP N-oxygenation were: Km = 1.8 +/-0.5 microM, Vmax = 9.5 +/- 1.6 nmol/mg per min, and Vmax/Km = 4.6 +/-0.5 ml/mg per min. n-Octylamine, an activator of FMO, enhanced the MPTP N-oxygenation activity by 51%, while methimazole, thiobenzamide and alpha-naphthylthiourea, alternate substrates of FMO, inhibited it by 27.4, 68.0 and 59.2%, respectively. The results indicate that MPTP is efficiently N-oxygenated by the recombinant rat liver FMO1A1, and that the responses to the modulators of FMO activity found in the recombinant rat liver FMO1A1 resemble those of mouse and rat liver microsomes as reported previously. The findings suggest that the recombinant FMO expressed in yeast cells is considered as a useful tool to study an involvement of FMO in the metabolism of environmental toxins or chemicals. In addition, FMO1A1 appears to be one of the predominant enzymes responsible for the N-oxygenation of MPTP at least in rat liver. << Less